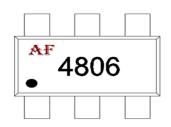


Over voltage and over current protection IC


Description

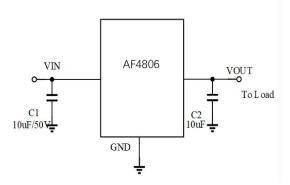
AF4806 is an Over-Voltage-Protection (OVP) IC. The device will switch off internal MOSFET to disconnect VIN to OUT to protect load when any of input voltage, input current over the threshold. The Over temperature protection (OTP) function monitors chip temperature to protect the device.

4 Applications

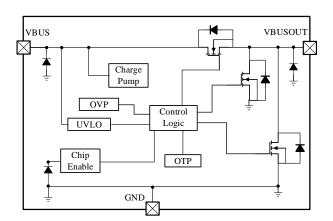
- > PND
- > Tablet
- ➤ HD Player
- > OTT
- Digital Cameras
- Digital Videos

4 Device Information

Marking

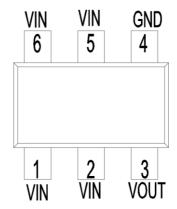

Top view

Package	Tape and Reel
SOT23-6L	3000 pcs


Features

- High voltage technology
- ➤ Maximum input voltage :30V
- > Output power ON time :8ms(Typ)
- ➤ OVP threshold: 6.1V
- ➤ OVP response time :<1us
- Output auto discharge

Typical Application



♣ Functional Block Diagram

Pin Configuration

Pin configuration (Top view)

NO.	Symbol	Description
1	VIN	Input pin. A 10uF low ESR ceramic capacitor or larger must be
2	VIN	connected as close as to this pin. It is recommended to use 50V capacitor or according to application.
3	VOUT	Output pin, Connect to load.
4	GND	Ground
5	VIN	Input pin. A 10uF low ESR ceramic capacitor or larger must be
6	VIN	connected as close as to this pin. It is recommended to use 50V capacitor or according to application.

Absolute Maximum Ratings(1)

(Unless otherwise specified, all voltage are with respect to GND, TA=25°C)

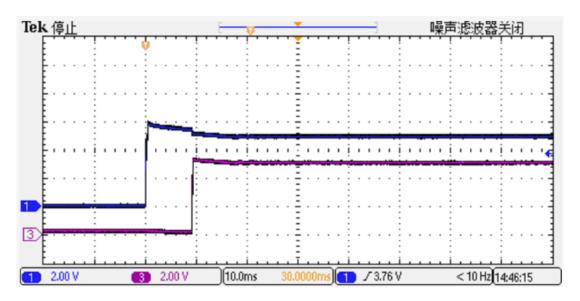
PARAMETER	SYMBOL	RATINGS	UNITS
Input voltage (ACIN pin)	$V_{ m IN}$	-0.3 ~ 30	V
Output voltage (VOUT pin)	$V_{ ext{OUT}}$	-0.3 ~ 30	V
Junction temperature	T_{J}	150	${\mathbb C}$
Storage temperature	Tstg	-55 ~ 150	$^{\circ}$
ESD Ratings	HBM	±3000	V
	MM	±200	V

^{(1) .} Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

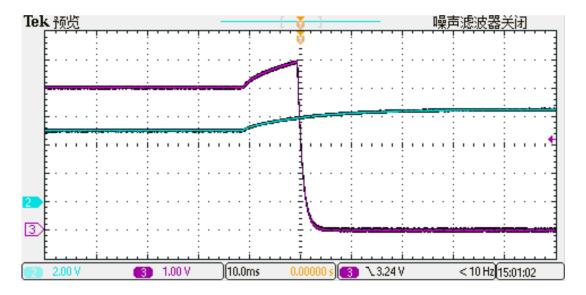
4 Recommend Operating Conditions

(Ta=25°C, unless otherwise noted)

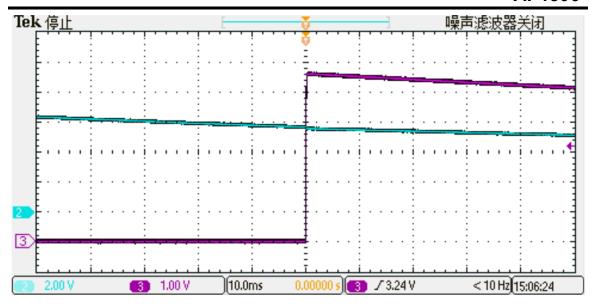
Parameter	Symbol	Value	Unit
Input voltage	$V_{ m IN}$	3.5 ~ 30	V
Output current	Iout	2.0	A
Ambient operating temperature	Topr	-40 ~ 85	$^{\circ}$ C


Lectrical Characteristics

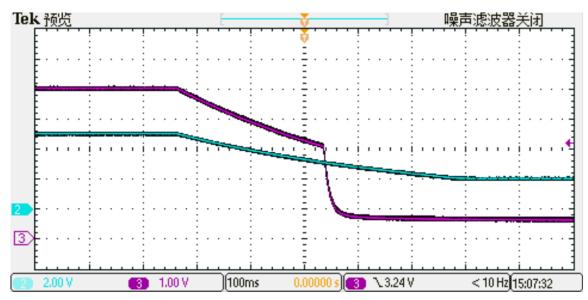
(Ta=25°C, unless otherwise noted)


Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
DC characteristics and Po	wer-ON-Reset					
Input quiescent current	I_Q	V _{ACIN} =5V,Iout=0A		120	200	uA
IN-to-OUT ON resistance	R _{ON}	V _{ACIN} =5V,Iout=3A		30		mΩ
Output auto discharge resistance	RDISCHARGE			500		Ω
Under voltage lock out threshold	UVLO	V _{ACIN} increasing from 0~3.5V		3.4		V
Under voltage lock out hysteresis	VHYS-UVLO	V _{ACIN} decreasing from 3.5~0V		300		mV
Output power-on time	TON	V _{ACIN} =0 -> 5V to output ON	6	8	12	ms
EN Threshold Voltage	VENL				0.4	V
	VENH		1.2			V
EN to GND current	I_{EN}				2	uA
Input Over-Voltage-Prote	ction (OVP)					
PROADJ threshold	Vove(th)	V _{ACIN} increasing from 5~7V	5.7	6.1	6.3	V
PROADJ hysteresis	V _{HYS} - PROADJ	V _{ACIN} decreasing from 7~5V		70		mV
OVP active time	Tovp	V _{ACIN} = 5 -> 10V			1	us
OVP recovery time	Ton(ovp)	V _{ACIN} =10 -> 5V to output ON	6	8	10	ms
Input Over-Current-Prote	ection (OCP)				1	1
OCP threshold	I _{OCP}		6	7	8	A
Over-Temperature-Protec	ction (OTP)				1	1
OTP threshold	T_{OTP}			155		$^{\circ}$ C
OTP hysteresis	T_{OTPHYS}			40		$^{\circ}$ C
Power Switch Body Diode	•				•	
Forward peak surge current	I _{FSM}	Pulse Width=10ms			15	A
		Pulse Width=20us			50	A

4 Typical characteristic

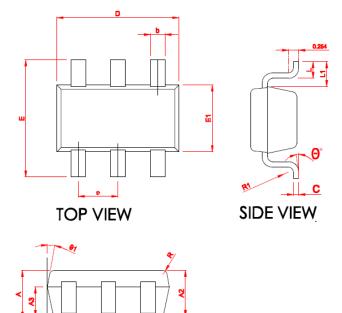


Power On



OVP Trigger

OVP Restore



UVLO Trigger

4 Package Outline

SIDE VIEW

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	1.06	1.15	1.24	
* A1	0.01	0.05	0.09	
* A2	1.05	1.10	1.15	
A3	0.65	0.70	0.75	
* b	0.30	0.35	0.45	
* с	0.117	0.127	0.157	
* D	2.87	2.92	2.97	
* E	2.72	2.80	2.88	
* E1	1.55	1.60	1.65	
* е	0.90	0.95	1.00	
* L	0.32	0.40	0.48	
* L1	0.55	0.60	0.65	
R	0.10 REF			
R1	0.12 REF			
* θ	0		8°	
θ1	8°	10°	12°	
θ2	10°	12°	14°	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.